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Item Description

Measurement of reflection coefficient
magnitude of reflector at a single fre-
quency of the following waveguide
sizes terminated with standard wave-
guide connectors.

201.920a-1 WR90 (8.2-12.4 GHz)
201.920a-2 WR62 (12.4~-18.0 GHz)
201.920z Special calibrations not covered by

the above schedule.

HicB-FrREQUENCY REGION

201.830 Immittance.

1) Maximum accuracy can be achieved
only in the case of instruments and compo-
nents equipped with connectors having a
plane of reference directly compatible with
the Bureau system with no necessity for
special adapters. To preserve higher calibra-
tion accuracies, coaxial connectors should
be utilized on standard instruments and
components wherever possible.

2) Power applied to any component
under test normally will not exceed 1 w.
In this respect, if necessary, caution should
be clearly stated in the calibration request.

Item Description

201.830a-1 Two-terminal impedance measure-
ment at one point in the frequency
range 30 kHz to 400 kHz, 0 to 10,000
ohms resistance, and 0 to 1100 gh

inductance.

Each additional point within the lim-
its in item 201.830a-1.

201.830a-2

201.830b-1 Two-terminal impedance measure-
ment at one point in the frequency
range 30 kHz to 1 MHZ, 0 to 1000
ohms resistance, and 0 to 110 gh in-

ductance.

Each additional point within the lim-
itsin item 201.830b-1.

201.830b-2

Two-terminal admittance measure-
ment at one point in the frequency
range 30 kHz to 1 MHz, 0 to 1100
pf capacitance.

201.830c-1

Each additional point within the lim-
its in item 201.830c-1.

201.830c-2

Two-terminal admittance measure-
ment at one point in the frequency
range 5 MHz to 250 MHz, 0 to 50
pmho conductance, and 0 to 50 pf
capacitance.

201.830d-1

201.830d-2 Each additional point within the lim-

its in item 201.830d-1

201.830e-1 Two-terminal impedance measure-
ment of coaxial components at fre-
quencles from 50 MHz to 1 GHz,
within the ranges 0.5 to 5000 ohms
magnitude and 0 to 90° for phase

angle.

201.830e-2 Each additional point within the lim-

itsinitem 201,830e-1,

201.830f-1 Q-Standard calibration in the fre-
quency range 50 kHz to 45 MHz, 0 to
1000 for effective Q, and 30 to 450 pf

effective resonating capacitance,

201.830z Special two-terminal immittance cal-
ibrations not covered by the above

schedule.

201.831a-1 Three-terminal capacitance calibra-
tion at 100 kHz, 465 kHz, or 1 MHz
for the following fixed nominal
values: 102, 1071, 109, 10, 102, and
103 pf, per frequency.
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.831b-1 Three terminal capacitance calibra-
tion at 465 kHz at one point in the

range 0.001 to 100 pf.

201.831b-2 Each additional point within the lim-

its in item 201.831b-1,
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Equivalence of Different Integral
Equations for Confocal
Resonators

Lotsch?! has proposed an integral equa-
tion for the modes of a two-dimensional
confocal resonator, which he says is different
from and more accurate than the integral
equation used by earlier workers, such as
Boyd and Gordon.? Actually the two inte-
gral equations are completely equivalent.
Lotsch’s equation describes the field at the
midplane of the resonator, and the simpler
equation of Boyd and Gordon describes the
field at either of the confocal mirrors.

To see the equivalence, denote the field
at the mirror by u(x) and the field at the
midplane by X (x). The two fields are related
by the Fresnel diffraction formula,
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where 2a is the width of the confocal mirrors,
d is their total separation, and k=2wx/),
where X is the wavelength.

The integral equation for u(x) is ob-
tained by eliminating X (x) from (1) and (2).
We get
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after carrying out the integration over xo.
Eq. (3) is just the integral equation of Boyd
and Gordon, and its solution in terms of
prolate spheroidal wave functions is well
known.

On the other hand, if we eliminate u(x)
from (1) and (2), we get
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where
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Up to unimportant differences in notation
and misprints, (4) is Lotsch’s integral
equation.

It follows that Lotsch’s equation is just
Boyd and Gordon’s equation written in a
more complicated form. If correctly handled,
therefore, the two equations must.lead to
identical physical predictions.
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